MOA is the most popular open source framework for data stream mining, with a very active growing community (blog). It includes a collection of machine learning algorithms (classification, regression, clustering, outlier detection, concept drift detection and recommender systems) and tools for evaluation. Related to the WEKA project, MOA is also written in Java, while scaling to more demanding problems.

New Release: 17.06 (June, 2017)!

Getting Started

What is MOA?

Documentation

MOA performs BIG DATA stream mining in real time, and large scale machine learning. MOA can be extended with new mining algorithms, and new stream generators or evaluation measures. The goal is to provide a benchmark suite for the stream mining community.

 

 

Mailing lists

MOA users: https://groups.google.com/group/moa-users

MOA developers: https://groups.google.com/group/moa-development

Citing MOA

If you want to refer to MOA in a publication, please cite the following JMLR paper:
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (2010); MOA: Massive Online Analysis; Journal of Machine Learning Research 11: 1601-1604 | BibTeX

Related Open Source Software

SAMOA

Apache SAMOA , a new framework for distributed stream mining, can be easily used with Apache Flink, Apache Storm, S4, or Samza.

ADAMS

ADAMS, a novel, flexible workflow engine, is the perfect tool for maintaining MOA real-world, complex knowledge workflows.

MEKA

The MEKA project provides an open source implementation of methods for multi-label classification and evaluation.