We’ve made a new release of MOA 14.11.
The new features of this release are:
- Lazy kNN methods.
- Albert Bifet, Bernhard Pfahringer, Jesse Read, Geoff Holmes: Efficient data stream classification via probabilistic adaptive windows. SAC 2013: 801-806
- SGDMultiClass for multi-class SGD learning.
- OnlineSmoothBoost
- Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu:An Online Boosting Algorithm with Theoretical Justifications. ICML 2012
- ReplacingMissingValuesFilter: a filter to replace missing values by Manuel Martin Salvador.
- HDDM Concept Drift detector
- I. Frias-Blanco, J. del Campo-Avila, G. Ramos-Jimenez, R. Morales-Bueno, A. Ortiz-Diaz, and Y. Caballero-Mota, Online and non-parametric drift detection methods based on Hoeffding’s bound, IEEE Transactions on Knowledge and Data Engineering, 2014.
- SeqDriftChangeDetector Concept Drift detector
- Pears, R., Sakthithasan, S., & Koh, Y. (2014). Detecting concept change in dynamic data streams. Machine Learning, 97(3), 259-293.
- Updates:
- SGD, HoeffdingOptionTree, HAT, FIMTDD, Change Detectors, and DACC
You find the download link for this release on the MOA homepage:
Cheers,
The MOA Team