MOA (Massive Online Analysis)
MOA is the most popular open source framework for data stream mining, with a very active growing community (blog). It includes a collection of machine learning algorithms (classification, regression, clustering, outlier detection, concept drift detection and recommender systems) and tools for evaluation. Related to the WEKA project, MOA is also written in Java, while scaling to more demanding problems.
New Release: 16.04 (April, 2016)!
MOA performs BIG DATA stream mining in real time, and large scale machine learning. MOA can be extended with new mining algorithms, and new stream generators or evaluation measures. The goal is to provide a benchmark suite for the stream mining community.
SAMOA
SAMOA (Yahoo Labs), a new framework for distributed stream mining, can be easily used with S4, Samza or Storm.
ADAMS
ADAMS, a novel, flexible workflow engine, is the perfect tool for maintaining MOA real-world, complex knowledge workflows.
MEKA
The MEKA project provides an open source implementation of methods for multi-label classification and evaluation.
Mailing lists
MOA users: https://groups.google.com/group/moa-users
MOA developers: https://groups.google.com/group/moa-development
MOA developers: https://groups.google.com/group/moa-development
Citing MOA
If you want to refer to MOA in a publication, please cite the following JMLR paper:
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (2010); MOA: Massive Online Analysis; Journal of Machine Learning Research 11: 1601-1604 | BibTeX